
ON THE MIE-GRtJ'NEISEN AND HILDEBRAND APPROXIMATIONS 397 

and 

dWe Wth 
P+--= ')1"--

dV V 
(2a) 

" V T _ V [o(Fth/T)/oV]T 
')I ( , ) - T [o(Fth/T)JoT]v' (2b) 

The Griineisen parameters ')I' and ')I" differ, in 
general, from the parameter ')I defined by the 
Griineisen relation: 

V (oS/oV)P VfJ 
y(V,T) = T (oS/oT)v = CvK (3) 

where fJ, K and Cv are the coefficient of volume 
thermal expansion, the isothermal compressibility 
and the heat capacity at constant volume of the 
solid. 

The vibrational formulation consists in replacing 
y' in equation (Ia) by y. Similarly, the thermal for­
mulation of the Mie-Griineisen approximation 
replaces y" in equation (2a) of the Mie-Griineisen 
approximation by y. This is permissible in a certain 
range of temperature and volume when and only 
when y', or y", does not depend explicitly on tem­
perature in such a range, as is apparent from the 
equations 
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which re-express the temperature derivative of 
the equation of state at constant volume by means 
of the thermodynamic identity (8P/8T)v = fJ/K. 
This leads at once to the thermodynamic expres­
sion of the two formulations of the Mie-Griineisen 
approximation, namely to the restrictions on the 
functional form of the thermodynamic functions 
of the solid which represent necessary and sufficient 
conditions for the validity of these formulations in 
a given range of temperature and volume. Indeed, 
the integration of equations (lb) or (2b) under the 
condition that y', or y", be a function only of the 
volume of the crystal in a certain temperature 
range leads to the following functional form for 

the vibrational free energy of the solid: 

Fvib(V,T) = Tf(T/0'(V)) (6a) 

or for its thermal free energy 

. Fth(V,T) = Tf(T/0"(V)). (7a) 

Here f denotes an arbitrary function, while 
0'(V) and 0"(V) are general characteristic tem­
peratures, subject only to the restrictions 
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The conditions (6a) and (7a) are clearly less re­
strictive than the Debye model. It should also be 
stressed that the restrictions (6) and (7) are not, in 
general, thermodynamically equivalent, and thus 
the vibrational and thermal Mie-Griineisen 
equations of state are not alternative formulations 
of the same equation, contrary to equations (1) and 
(2). BORN(S) had already shown, by a different pro­
cedure, that for an Einstein solid with frequency 
v the validity of the vibrational Mie-Griineisen 
equation of state implies that the vibrational free 
energy has the form Tf[T/v(V)], while GRUNEISEN(3) 
had pointed out that this equation follows from 
the assumption that the vibrational free energy 
has the form (6a). 

The thermodynamic expression of the condition 
that y be a purely volume-dependent functiop in a 
certain range of temperature is similarly obtained 
by integrating equation (3). This leads to the 
following functional form for the entropy of the 
solid: 

S(V,T) = S(T/0(V)) (Sa) 

dIn 0 
y(V) = - dIn V (Sb) 

implying that whenever y does not depend on 
temperature at constant volume, it measures the 
logarithmic derivative of a purely volume-de­
pendent characteristic temperature for the entropy. 
Condition (8a) is less restrictive than conditions 
(6a) and (7a), since when the vibrational or thermal 
free energy is of the form (6a) or (7a) in a certain 
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range of temperature and volume, the entropy is 
of the form (Sa) with 0(V) = 0'(V) or 0(V) = 
0"(V) [and the heat capacity at constant volume 
depends only on the ratio T/0(V)], but the con­
verse is not necessarily true. This implies that the 
independence of I' from temperature at constant 
volume for a given solid in a certain range of tem­
perature and volume, established by means of measure­
ments of (3, Cy and K, does not guarantee, in general, 
the validity in the same range of either formulation 
of the Mie-Gruneisen approximation. However, if 
the entropy has the form (Sa) in a temperature 
range from OaK upwards, or if the heat capacity at 
constant volume has the form Cy(V,T) = 
C y(Tj0( V) in such a range and the entropy of 
the solid at OaK is a constant, the thermal free 
energy has the form (7a) in the same range, with 
0"(V) = 0(V). DAVIES(9) had already pointed out 
that if the heat capacity at constant volume has a 
purely volume-dependent characteristic tempera­
ture in a temperature range including the absolute 
zero, and Nernst's theorem applies, I' and 1''' are 
both given by the logarithmic derivative of this 
characteristic temperature. 

The vibrational and thermal formulations of the 
Hildebrand approximation are traditionally ex­
pressed through the restrictions that they impose 
on the functional form of the internal energy W of 
the solid: these read 

and 

W(V,T) = We (V) + Wth(T) (10) 

respectively. These restrictions are completely 
equivalent to assuming that 1" and 1''' are related 
to I' by the equations 

Wviby'(V,T) = TCvy(V,T) (11) 

WthyH(V,T) = TCyy(V,T) (12) 

The vibrational and thermal Hildebrand equations 
of state, obtained from equations (la) and (2a) by 
using equations (11) and (12), respectively, are not 
alternative formulations of the same equation, since 
the restrictions (9) and (10) are not, in general, 
thermodynamically equivalent. 

Thermodynamically, the validity of the Hilde­
brand restrictions on the vibrational or thermal 
energy of a solid in a certain range of temperature 
and volume does not ensure the validity in the 
same range of the Mie-Griineisen restrictions on 
the corresponding free energies, nor vice versa. 
In particular, the validity of equation (9) in a range 
from To(V) to a running T implies only that 
FVib(V,T)/T is the sum of a function of the tem­
perature and a function of the volume, while the 
validity of equation (6) implies only that Wvib(V, T) 
= Tg(T/0'(V) with g(x) = -x(dfjdx). Thus, 
in general, one has no thermodynamic reason to prefer 
either the Mie-Gruneisen or the Hildebrand approxi­
mation. One can, on the other hand, establish 
thermodynamically the equivalence of the two 
approximations in a range of temperature and 
volume where the vibrational or thermal energy 
of the solid depends only on temperature, and in 
a linear way, and the vibrational or thermal free 
energy has the functional form T In (Tj0(V», 
since either restriction follows from the other. 

3. THERMODYNAMIC FUNCTIONS AND 
GRtlNEISEN PARAMETERS OF A CUBIC 
NON-METAL IN THE QUASI-HARMONIC 

APPROXIMATION 

To discuss the validity of the functional restric­
tions on the thermodynamic functions of a cubic 
solid under hydrostatic pressure which express the 
Mie-Griineisen and Hildebrand approximations, 
one must resort to the statistical mechanics of the 
solid. We restrict ourselves to cubic non-metals, for 
which it is plausible to adopt the adiabatic approxi­
mation and to neglect the electronic contributions 
to the vibrational parts of the thermodynamic func­
tions. In addition; we treat the lattice contributions 
by the quasi-harmonic approximation: namely, we 
assume that these contributions, taking the (con­
stant) entropy of the solid at OaK as the zero for the 
entropy, are given by the thermodynamic functions 
of an assembly of uncoupled harmonic oscillators, 
whose frequencies depend only on the volume of 
the solid. The quasi-harmonic approximation has 
been used quite commonly in recent years in 
studies of thermodynamic properties of solids (see, 
e.g. Refs. 12-1S), and, for our purposes, it has the 
merit of allowing a general analysis of the func­
tional forms of the thermodynamic functions 
without the adoption of particular force models. 
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